HOMEWORK 1

Que: (30 p) Cauchy inequality is given by:

$$\left| \sum_{i=1}^{n} a_{i} b_{i} \right|^{2} \leq \sum_{i=1}^{n} |a_{i}|^{2} \sum_{i=1}^{n} |b_{i}|^{2}.\dagger$$

where $a_i, b_i, 1 < i < n$ are complex numbers. Prove Cauchy inequality by induction.

Que: (20 p) Prove that

$$\left|\frac{a-b}{1-\bar{a}b}\right|<1$$

if |a| < 1 and |b| < 1.

Que: (20 p)

4. Show that there are complex numbers z satisfying

$$|z - a| + |z + a| = 2|c|$$

if and only if $|a| \leq |c|$. If this condition is fulfilled, what are the smallest and largest values of |z|?

Que: (30 p)

Express the following complex numbers in the polar form.

- a) 4 + 3i
- b) 2 5i

- e) $\frac{\sqrt{5}}{2+2i}$

- c) -2 2i d) -1 + 4i g) $\frac{1+i}{i-1}$ h) $(\sqrt{3} + i)^2$

Express the following complex numbers in the Cartesian form such as a + ib.

- a) $\sqrt{2}e^{i\pi/4}$
- b) $\sqrt{5}e^{-i\pi/3}$
- c) $4e^{i\pi}$
- d) 2eⁱ

Calculate following complex numbers.

a) $(2+i)^2$

- b) $(3i-1)^3$

- d) $(i-1)^5(1-2i)^6$
- c) $(4i + 5)^2(-3i 1)^4$ f) $(3 2i)^8(-1 i)^4$

Find all values of the following roots.

- a) (3i)^{1/2}
- b) $(-i)^{1/4}$

- e) (-4)^{1/2}
- f) (64i)^{1/3}
- c) $(-1)^{1/4}$ d) $27^{1/6}$ g) $(1+i)^{1/2}$ h) $(-1)^{1/12}$

Fort he complex number z = 2 - i calculate following functions.

a) zⁿ

c) z^{-n}

b) $\frac{1}{z}$ d) $z^3 + 2z^2 + 5z + 4 - 2i$

e) |z|²

g) z · z̄

h) Arg(z-2) + Arg(z+i)